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1. Introduction

Duality relations [1 – 3] are symmetries which relate partition functions of classical spin

models. The prototype for these symmetries, and its most famous example, is the well-

known Kramers and Wannier duality in the two-dimensional (2D) Ising model [4]. This

symmetry relates the partition function of a 2D Ising model at temperature T to the

partition function of another 2D Ising model at temperature T ?, where T ? is a decreasing

function of T , and allowed for the first exact determination of the critical point of the model,

before its exact solution by Onsager [5]. If it is known that the critical point is unique, then

it must be at Tc = T ?
c , and can be determined by the duality relation. Besides its interest

in the determination of critical points [4, 6], dualities are also used to map properties of

well-studied models to less developed ones [7, 8]. For instance, it is known that in three

dimensions Z(2) lattice gauge theory is dual to the Ising model. Thus all work developed in

understanding the latter can be translated via duality relations to bring information about

the former [9]. In this paper we explore duality relations in Z(2) lattice gauge theories and

Ising models in two and three dimensions making use of an algebraic reformulation of spin

models we developed for the case of the Z(2) pure gauge theory in an earlier paper [10].

The Kramers-Wannier dualities can be briefly stated as follows [1]. For each dimension

d and integer n, 1 ≤ n ≤ d, there is one d-dimensional generalised Ising model denoted Mdn,
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whose local variables are Ising spins σ = ±1. The index n indicates where the spins are

situated. For spins lying on vertices, links and faces we have n = 1, 2 and 3, respectively.

The terms in the hamiltonian are products of spins lying on the boundary of links for n = 1,

of faces for n = 2, etc. Therefore, Md1 describes the usual d-dimensional Ising model, with

two-spin interactions and Ising spins at vertices. Md2 is the Z(2) pure gauge theory in d

dimensions, with spins lying on links and plaquette terms in the hamiltonian. An external

magnetic field h can be added to any Mdn. If that is the case, then Md1 becomes the

Ising model with an external magnetic field, and Md2 describes the Z(2) gauge theory

coupled to a Higgs matter field. There are two kinds of duality relations. In the absence of

magnetic field, the models Mdn and Md d−n are dual. In the presence of a magnetic field,

the models Mdn and Md d−n+1 are dual. For the simplest cases, one finds the following. In

two dimensions, the Ising model is self-dual in the absence of magnetic field, and dual to

the Z(2) Higgs-gauge theory in the presence of a magnetic field. In three dimensions, the

Ising model is dual to Z(2) pure gauge theory, and the Z(2) Higgs-gauge theory is self-dual.

We extend these dualities in two directions. First, we consider more general lattices

than the square and cubic lattices traditionally used. Second, we describe them as special

cases of a larger class of GL(2,R) symmetries acting on generalised Z(2) lattice gauge the-

ories herein defined. A mathematical formalism borrowed from topological field theories

is used to develop an algebraic description of Z(2) gauge-Ising models, following the pro-

cedure introduced in [10] for the case of the Z(2) pure gauge theory on three-dimensional

triangulations. This leads us to associate a bidimensional vector space H with algebra

and coalgebra structures to each model under study. If the vector basis of H is changed,

a lattice model equivalent to the original one is obtained. We study two specific changes

of basis of H. One transformation leads to explicit expressions for the Kramers-Wannier

dualities on arbitrary lattices. The cases of triangulations and regular lattices in two and

three dimensions are worked out in detail. Usually, one needs to study these dualities case-

by-case, applying sequences of combinatorial moves as the decoration transformation or the

star square transformation [1] in a manner suited for each lattice under consideration. In

the algebraic formalism, all these operations are shown to be contained in a single change

of basis of H. In addition, we study a one-parameter class of symmetry transformations for

which the gauge coupling constant changes continuously in the two-dimensional generalised

Z(2) gauge theories as another application of the general formalism.

This paper is organised as follows. In section 2 we give a brief description of Z(2)

gauge theories and Ising models in d-dimensions, mainly to fix notation. In section 3 we

introduce our algebraic reformulation of the Z(2) lattice gauge theory. The cases of the

pure and Higgs-gauge theories are considered, for triangulations and hypercubic lattices.

In section 4 we define the generalised gauge theories studied in this paper and prove that

for any change of basis in H there is a related duality transformation between these models.

We work out many examples in two and three dimensions. In particular, we describe the

classical Kramers-Wannier dualities as special instances of our formalism. In section 5 we

study in two dimensions the one-parameter class of symmetry transformations for which the

gauge coupling changes continuously. Our conclusions are collected in section 6, together

with final remarks and the discussion of possible developments.
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2. The models

The d-dimensional Ising model is determined for any d-dimensional lattice L by two cou-

pling constants: the inverse temperature βI , and the external magnetic field m. The local

variables are Ising spins σv = ±1 assigned to the vertices v of L. In terms of these, the

hamiltonian reads

HI = βI

∑

l

σx(l)σy(l) + m
∑

v

σv , (2.1)

where σx(l) and σy(l) are the spins at the two ends of the link l, and σv is the spin at

the vertex v. The first sum runs over all links, and the second over all vertices of L. The

partition function is

ZI =
∑

{σv}

exp HI , (2.2)

where {σv} denotes the set of all spin configurations over the vertices of L. This partition

function can be rewritten as

ZI =
∑

{σv}

∏

l

WI(l)
∏

v

WI(v) , (2.3)

where we have introduced the local Boltzmann weights

WI(l) = exp [βI σx(l)σy(l)] ,

WI(v) = exp(mσv) ,
(2.4)

situated at the links and vertices of L, respectively. The case m = 0 describes the Ising

model in the absence of an external magnetic field, in which case WI(v) = 1 and can be

ignored in eq. (2.3). If m 6= 0, then we say that there is an external magnetic field.

The Z(2) lattice gauge theory is also determined by two coupling constants, the gauge

coupling βg, and the Higgs coupling h. The gauge variables are elements of the discrete

group Z(2), i.e. Ising spins σl = ±1, situated at the links l of the lattice L. The action is

Sg = βg

∑

f

∏

a

σa(f) + h
∑

l

σl , (2.5)

where σa(f) is the spin at the link a on the boundary of the face f , and the product runs

over all links on ∂f . The first sum runs over all faces, and the second over all links of L.

When L is a triangulation, all faces are triangular and the first term describes a three-

spin interaction, σa(f)σb(f)σc(f). If L is a cubic lattice, then this term gives a four-spin

interaction. In general lattices, the number of spins in the product is variable, equal in

each face to the number of links on its boundary.

The partition function of Z(2) gauge theory is given by the usual expression

Zg =
∑

{σl}

exp Sg , (2.6)
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where the sum runs over all spin configurations {σa} over the links of L. This partition

function can be rewritten as

Zg =
∑

{σl}

∏

f

Wg(f)
∏

l

Wg(l) , (2.7)

where we have introduced the local Boltzmann weights

Wg(f) = exp [βg
∏

a σa(f)] ,

Wg(l) = exp(hσl) ,
(2.8)

situated at the faces and links of L, respectively. When h = 0, we have Z(2) pure gauge

theory. In this case Wg(l) = 1 and can be ignored in eq. (2.7). If h 6= 0, then we say that

Z(2) gauge theory is coupled to a Higgs matter field.

The definitions make sense for any dimension n. When a specific dimension is consid-

ered, we write H
(2)
I , Z

(3)
g , etc.

3. Algebraic reformulation of Z(2) gauge theory

In this section we present an algebraic reformulation of Z(2) lattice gauge theory in which

the local Boltzmann weights and the partition function are described as coefficients of

certain tensors in a suitable vector space H. These tensors endow H with algebra and

coalgebra structures. We first give a characterisation of H by itself, in a mathematical

independent way, and show how a lattice field theory with face and link local weights can

be constructed from the knowledge of the structure constants of H. Next we adjust the

free parameters of H so that the weights correspond to those of Z(2) lattice gauge theory.

We consider the cases of pure and Higgs-gauge theory on triangulations and hypercubic

lattices.

3.1 Structure tensors and weights

Let us describe the algebraic structure H. We define H as a bidimensional vector space

with basis B = {φ0, φ1}, and dual basis B? = {ψ0, ψ1}, with ψa(φb) = δa
b . There is a linear

product of vectors defined in H, described by a product tensor M c
ab, for which

(u · v)c = M c
abu

avb, ∀u, v ∈ H . (3.1)

In the basis B, the product of basis vectors read

φ0 · φ0 = φ1 · φ1 = ρ−1 cosh(x) φ0 + ρ−1 sinh(x) φ1 ,

φ0 · φ1 = φ1 · φ0 = ρ−1 sinh(x) φ0 + ρ−1 cosh(x) φ1 .
(3.2)

The algebra so defined is associative, and has an unity ι = ρ cosh(x)φ0 − ρ sinh(x)φ1.

The parameters ρ and x will be given as functions of the gauge coupling βg for each lattice

L under consideration. There is also a coproduct defined in H, described by a coproduct

tensor ∆bc
a , for which

[∆(u)]bc = ∆bc
a ua, ∀u ∈ H . (3.3)
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We define ∆ by its action on the basis vectors of B, which is given by

∆(φa) = Ka φa ⊗ φa , (3.4)

where Ka is a constant which will be determined as a function of the Higgs coupling h for

each lattice L. In this basis, the coproduct tensor coefficients read

∆bc
a = Ka δab δac . (3.5)

The coalgebra so defined is coassociative, and has a counity ε = K−1
0 ψ0 + K−1

1 ψ1.

We now proceed to show how the product and coproduct tensors M c
ab and ∆bc

a can

be used in order to define the local Boltzmann weights of a lattice field theory. For that

purpose we follow prescriptions introduced in [11] in the context of topological field theories,

and adapted to the case of lattice gauge theories in [10]. These prescriptions allow one to

define local weights at faces and links on any lattice given as the gluing of polygonal faces

along common links, as triangulations and hypercubic lattices, for example. The algebra

H must be associative and coassociative, and it was proved in [11] that whenever it is

a Hopf algebra, the resulting theory is a topological field theory. Here we consider an

algebra which is not Hopf, and show that it leads to Z(2) lattice gauge theory in a variety

of conditions.1 The reformulation of a lattice gauge theory in algebraic terms is not trivial,

and allows for the use of new mathematical tools in its study, as we will show for the case

of duality relations.

The prescriptions we use consist of a set of formulae in which the structure tensors

M c
ab and ∆bc

a are used to construct higher order tensors, whose coefficients are identified

with local weights of a lattice theory associated to H. The lattice L is always supposed to

be a triangulation or a hypercubic lattice, for definiteness. Let us first consider the face

weights. These are determined by the algebra structure of H. We define the covariant

tensors Mab...c as

Mab...c = T (φa φb · · ·φc) , (3.6)

where

T (v) = M b
ab va, ∀v ∈ H . (3.7)

The covariant vector Ta = M b
ab is called the trace. The tensor Mab...c so defined is cyclically

symmetric whenever the algebra H is associative [11]. Now consider a face f of L, and let

N be the number of links on its boundary. In addition, let there be spins σfi
at the links

on its boundary, where fi = 0, 1. Then it is assigned to this face a local Boltzmann weight

given by Mf1f2...fN
(see figure 1). Its value depends only on the structure constants M c

ab

of H, and on the spin configurations at the boundary of f .

The link weights are determined in a similar fashion by the coalgebra structure of H.

In analogy with eq. (3.6), we define contravariant tensors

∆ab...c = C(ψaψb . . . ψc) , (3.8)

1We have not defined an antipode operator S : H 7→ H, but we will admit that S
b
a = δ

b
a, where δ is the

Kronecker delta.
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Figure 1: A triangular face f with configurations fi = 0, 1 on its boundary, describing spin-gauge

variables σfi
= (−1)fi . The corresponding local Boltzmann weight is given by Mf1f2f3

.

where

C(ω) = ∆ab
a ωb, ∀ω ∈ H , (3.9)

and the contravariant vector Ca = ∆ba
b is called the cotrace. For the coproduct given in

eq. (3.4), it follows that

∆a1 a2...aM−1 aM = KM
a δa1,aδa2,a . . . δaM ,a , (3.10)

where the δ′s are Kronecker deltas, and a = 0, 1. Let l be a link of L, and M be the

number of faces meeting at l. Then we assign a tensor ∆a1a2...aM with M indices to this

link. According to eq. (3.10), the tensor coefficients vanish unless all its indices ai are equal

to some fixed a = 0, 1. We let this index describe the local spin configuration σa = (−1)a

at the link. The corresponding link weight is given by the tensor coefficient ∆aa...a = KM
a .

The partition function is defined as a sum over configurations, as usual. There is a

local weight Mf1f2...fN
for each face f , and a local weight ∆alal...al for each link l of L. For

a given spin configuration {σa}, there corresponds a statistical weight

W =
∏

f

Mf1f2...fN

∏

l

∆al al...al , (3.11)

where the first product runs over all faces, and the second over all links of L. The partition

function Z is the sum of W over all spin configurations,

Z =
∑

{σa}

∏

f

Mf1f2...fN

∏

l

∆al al...al . (3.12)

The expression in eq. (3.12) completes our description of the lattice field theory associated

to the algebra H. The partition function Z depends on the lattice L, and on the parameters

β, x and Ka which determine the structure constants of H. In the next sections we will

show how these parameters can be adjusted to give Z(2) theory local weights, both for the

case of triangulations and hypercubic lattices. But before we proceed, we want to discuss

the algebraic meaning of the partition function Z. Our purpose is to prove that Z is a

scalar of H. This is the central result involved in the proof of the symmetry transformations

described in this paper.
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l2

l1
l4

l3

l1 l2 l4l3

l

Figure 2: A link l shared by four faces. There are spin-gauge configurations σli = (−1)li at the

face sides glued to the link. The corresponding local Boltzmann weight is ∆l1 l2 l3 l4 .

Let us first rewrite the sum in eq. (3.12) in a more symmetric form. Note that the

indices of the face weights may assume any set of conceivable values inside the sum, while

the indices of the link weights appear only as repetitions, a1 = a2 = · · · = al. This

assymetry can be removed. From eq. (3.10), we know that the tensor coefficients ∆a1a2...aM

are zero whenever any two of its indices are distinct. Thus we can add terms with local

weights given by such coefficients to the sum in eq. (3.12), without changing the value of

Z. In this way a new partition function Z ′ is defined, which differs from Z only by a series

of vanishing terms. This partition function can be made much more symmetric than the

original, as we want. The new models thus obtained are the generalised spin-gauge models

involved in the duality relations we will discuss later. We now turn to their definition.

Consider a particular link l in a lattice L, and let M be the number of faces meeting

at the link. Instead of assigning a single spin variable al to this link, as usual, let us attach

M spins to it, one for each gluing of a face to the link. One may think that the spins are

attached to the boundaries of the faces, and meet at the link when the faces are glued into

it (see figure 2). We write the spin variables as σli = (−1)li , li = 0, 1. To each link let

there correspond a local Boltzmann weight given by the tensor coefficients ∆l1l2...lM , where

this tensor is defined by eq. (3.8). The face weights are Mf1f2...fN
, as before. Then the

partition function is

Z ′ =
∑

{σ′

a}

∏

f

Mf1f2...fN

∏

l

∆l1l2...lM , (3.13)

where the sum runs over all configurations {σ′
a} of the new theory. In this expression, links

and faces are treated on the same footing. But from eq. (3.10), the link weights ∆l1l2...lM

are nonzero only if all its indices are equal to some al, so that the sum in eq. (3.13) reduces

to the one in eq. (3.12). Thus we conclude that Z ′ = Z.

The advantage of this formalism is that the sum in eq. (3.13) now consists of a series

of contractions of indices. Note that each spin configuration appears as an upper index in

some face weight, and as a lower index in some link weight. To sum over its two values is the

same as contracting this pair of indices. Furthermore, the sum over all spin configurations

– 7 –
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{σ′
a} is equivalent to a contraction of all indices in the tensor inside the sum symbol, i.e.,

the outer product of all weights Mf1f2...fN
and ∆l1l2...lM over the lattice. The result must

be a scalar, and is the partition function Z ′. Thus Z is a scalar invariant of H.

3.2 Triangulations

Now we begin to study the theories defined by the algebra H for specific values of the free

parameters ρ, x and Ka. We first let the lattice L be a triangulation, and show which

values these parameters must assume in order to describe Z(2) lattice gauge theory in this

case. For triangulations, the algebraic formalism can describe the pure gauge theory in

any dimension, and the Higgs-gauge theory in two dimensions. In higher dimensions, a

modified Higgs-gauge theory is also considered.

Pure gauge theory. In a triangulation L all faces are triangular, and so the face weights

are coefficients of the three-indexed tensor Mf1f2f3
. For simplicity, we write the spin

configurations on the boundary of a face f as a, b, c = 0, 1. The corresponding face weight

is Mabc. For Z(2) lattice gauge theory, from eq. (2.8) we must have

Mabc = exp
[

(−1)a+b+c βg

]

. (3.14)

These weights are obtained from H when the parameters x and ρ satisfy

e−2βg = tanh(3x) ,

ρ6 = 2 sinh(6x) ,
(3.15)

as can be checked. These relations fix completely the algebraic structure constants of H,

and give the correct Z(2) face weights whenever triangular faces are considered.

The coproduct of H is related to the link weights. For the Z(2) pure gauge theory,

all link weights ∆alal···al must be equal to 1. This is equivalent to setting Ka = 1, as seen

from eq. (3.10). Thus, the Z(2) pure gauge theory is described by the coproduct

∆(φa) = φa ⊗ φa . (3.16)

The validity of this formula is not restricted to triangulations. It gives the correct link

weights of the Z(2) pure gauge theory for any lattice L and dimensionality d.

Higgs-gauge theory. Now let h 6= 0. First consider the case of two-dimensional tri-

angulations. Then any link l is shared by exactly two faces, and the corresponding link

weight is ∆alal . Thus, from eq. (2.8), we must have ∆alal = exp[(−1)alh]. From eq. (3.10),

this condition leads to K0 = eh/2 and K1 = e−h/2, which is equivalent to

∆(φ0) = eh/2 φ0 ⊗ φ0 ,

∆(φ1) = e−h/2 φ1 ⊗ φ1 .
(3.17)

This is the coproduct for Z(2) gauge-Higgs theory in two dimensions. In higher dimensions,

there is no choice of Ka which leads to the correct link weights of Z(2) gauge-Higgs theory

on triangulations. In general, the number M of faces meeting at a link l is variable in a

– 8 –
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d-dimensional lattice, for d > 2. Therefore, one is naturally led to the equation KM
a =

exp[(−1)ah],∀M ∈ N, which has no solution for h 6= 0. On the other hand, a modified

theory can be obtained if the coproduct of eq. (3.17) is applied for d > 2. That is, put

∆(φ0) = eh φ0 ⊗ φ0 ,

∆(φ1) = e−h φ1 ⊗ φ1 .
(3.18)

This leads to the link weights

∆a1 a2,... aM = exp [(−1)aMh] δa1,aδa2,a . . . δaM ,a , (3.19)

i.e., to a Z(2) gauge-Higgs theory with a variable Higgs coupling hl, whose strength is

proportional to the number M of faces meeting at the link l, hl = Mh. When the lattice

is regular, one obtains a Higgs-gauge theory with Higgs coupling Mh.

3.3 Hypercubic lattices

In hypercubic lattices, both the pure and the Higgs-gauge theory admit an algebraic de-

scription for any dimensionality d. All faces are square in a hypercubic lattice. Therefore,

the corresponding weights are coefficients of the four-indexed tensor Mf1f2f3f4
. We write

the configurations on the boundary of a square face as a, b, c, d = 0, 1. The corresponding

face weight is Mabcd. For Z(2) lattice gauge theory, we must have

Mabcd = exp
[

(−1)a+b+c+d βg

]

. (3.20)

These weights follow from the relations

e−2βg = tanh(4x) ,

ρ8 = 2 sinh(8x) ,
(3.21)

which play the role of eq. (3.15) for the case of square faces, determining the dependence

of ρ and x in the gauge coupling βg.

The coproduct of H is determined by the link weights. In two dimensions, nothing

changes in relation to the case of triangulations. The Z(2) pure and gauge-Higgs theories are

described by the coproducts of eqs. (3.16) and (3.17), respectively, by the same arguments.

In higher dimensions, hypercubic lattices offer the advantage over triangulations that the

number M of faces meeting at a link is now constant, due to the regularity of the lattice.

For a d-dimensional hypercubic lattice, we have M = 2d−1. It follows that an algebraic

description is then available for the Higgs-gauge theory. From eqs. (2.8) and (3.10), we just

need to set K0 = exp(h/2d−1) and K1 = exp(−h/2d−1). For instance, for cubic lattices the

coproduct is

∆(φ0) = eh/4 φ0 ⊗ φ0 ,

∆(φ1) = e−h/4 φ1 ⊗ φ1 ,
(3.22)

and for d = 2 we recover the result of eq. (3.17).
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4. The duality relations

4.1 General algebraic symmetries

To the fact that the partition function Z is a scalar invariant of H, there corresponds a class

of symmetries among the models we described algebraically in the last section. These com-

prise a large class of transformations on H. Let us recall that the local weights Ma1a2...aN

and ∆a1a2...aM are tensor coefficients, and therefore not basis independent. Instead, if one

chooses a new basis B′ = {ξ0, ξ1}, where ξa = Eb
a φb, and E is a nonsingular 2-by-2 matrix,

then the weights transform according to the usual formulae of tensor algebra,

∆
′ l1 l2···lM = Dl1

x1
Dl2

x2
· · ·DlM

xM
∆x1 x2···xM ,

M
′

f1 f2···fN
= Ex1

f1
Ex2

f2
· · ·ExN

fN
Mx1 x2···xN

,
(4.1)

where D = E−1. On the other hand, as the partition function is a scalar, its value is not

affected by the transformation. In short, the change of basis gives new face and link weights

M
′

f1 f2···fN
and ∆

′ l1 l2···lM , which define a lattice theory which may be very different from

the original one, but whose partition function has the same value as that of the former.

For any element of GL(2,R), there is a symmetry of this kind.

A simple example of these transformations is given by rescaling the basis vectors of B,

i.e. by letting ξa = sa φa, where the si are real parameters. The local weights change as

∆
′ l1 l2···lM = s−1

l1
s−1
l2

· · · s−1
lM

∆l1 l2···lM ,

M
′

f1 f2···fN
= sf1

sf2
· · · sfN

Mf1 f2···fN
.

(4.2)

The interpretation of the above equations is the following. Let σfi
be the spins at the

boundary of a face f . Then the transformation inserts a factor sf1
in the corresponding

face weight, for each σfi
. To compensate, an additional factor s−1

fi
is inserted in the weight

of the link where σfi
is glued. It was shown in [10] that such transformation can be used

in the study of the low-temperature limit of Z(2) pure gauge theory, and leads to a clear

interpretation of this regime as a topological field theory.

Hereafter we consider new instances of such transformations. We take as the starting

point the algebra and coalgebra structures defined in sections 3.2 and 3.3, which give Z(2)

lattice gauge theory in a variety of conditions, and study the action of specific elements of

GL(2,R) on the local weights of these theories. The models obtained by these transforma-

tions may be very distinct. For instance, we will show that a transformation E exists for

which the face weights in the new basis B′ have the form

M
′

f1 f2···fN
= δf1af

δf2af
· · · δfN af

, (4.3)

where the δ’s are Kronecker deltas, and af = 0, 1. In this case, the statistical weight of

a given face f is nonzero only if all configurations fi at its boundary are equal to some

fixed value af . One may think of such configuration as assigned to the face itself. Thus

in the new model the spin variables are situated at faces. The link weights are ∆
′ l1 l2···lM ,

where the variables lj describe the configurations at the faces meeting at the link. If

in the original theory there were configurations at links and local weights at faces, then
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we have a transformation from a model on the lattice L to a model on its dual lattice

L?. This is the case of the dualities depicted in [1], and we will show that they can be

obtained as special cases of our transformations. This is done in sections 4.2 and 4.3. The

algebraic reformulation of these dualities allows for their study on arbitrary triangulations,

and leads to explicit expressions for the relation between partition functions on any finite

triangulation, extending results known for square and cubic lattices.

A different sort of symmetry is considered in section 5. The action of a one-parameter

class of transformations F on the local weights is studied for which the gauge coupling of

Z(2) Higgs-gauge theory in two dimensions changes continuously, compensated by a gradual

appearance of an Ising interaction at links. This gives an example of how continuous

transformations can be dealt with in our algebraic formalism, and leads to a class of

symmetries among a family of generalised Ising-gauge models which we will describe in

section 5. These generalised models are equivalent to the Higgs-gauge theory, as will be

shown.

4.2 Two-dimensional dualities

Pure gauge theory. We first consider, mostly for didactic reasons, the case of Z(2)

pure gauge theory on two-dimensional triangulations. It is an well known fact that in

two dimensions lattice gauge theories are soluble in general [12], and so this case is to be

considered as a first simple application of the transformation formalism. We show how an

explicit solution of the model can be found for arbitrary triangulations.

The Z(2) pure gauge theory is described by the coproduct given in eq. (3.16), and as

the lattice is composed of triangular faces we let x and βg satisfy the relations of eq. (3.15).

In this case the algebra H reduces to

φ0 · φ0 = φ1 · φ1 = ρ−1 cosh(x) φ0 + ρ−1 sinh(x) φ1 ,

φ0 · φ1 = φ1 · φ0 = ρ−1 sinh(x) φ0 + ρ−1 cosh(x) φ1 .

∆(φ0) = φ0 ⊗ φ0, ∆(φ1) = φ1 ⊗ φ1 ,

(4.4)

with e−2βg = tanh(3x) and ρ6 = 2 sinh(6x). The face and link local weights are the

coefficients of the tensors Mabc and ∆ab, respectively. Consider the change of basis given

by

E =

( 1
2ρe−x 1

2ρe−x

1
2ρex −1

2ρex

)

, (4.5)

where ξa = Eb
a φb. In the basis B′ = {ξ0, ξ1}, the local weights read

∆′ ab = 2ρ−2 exp[(−1)a2x]δab ,

M ′
abc = δac δbc .

(4.6)

These transformed weights are interpreted as follows. The face weights are nonzero only

if all spins on the face boundary are equal. Thus the new model has spin variables σx at

faces. For a link connecting two neighboring faces with spins σx and σy there corresponds a

local weight ∆′ xy. From eq. (4.6), this weight vanishes if x 6= y. Thus a spin configuration

has non-vanishing global weight only if, at all links over the lattice, only faces with the
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same configuration are glued. This is possible only if all faces in the lattice have the same

configuration.2 Thus only two global configurations contribute to the partition function,

those for which all faces have spin +1 or −1. Therefore, the partition function for a

two-dimensional triangulation L is

Z
(2)
g (L, βg)|h=0 = (2ρ−2)Nl(e2Nlx + e−2Nlx)

= 2Nl+1ρ−2Nl cosh(2Nlx) ,
(4.7)

where Nl is the number of links of L. This expression can be rewritten in terms of β as

Z(2)
g (L, βg)|h=0 = 23/2Nf coshNf β (1 + tanhNf β) , (4.8)

where we have used that, for any triangulation, Nl = 3/2Nf , and that exp−2β = tanh 6x ⇒
exp−6x = tanh β. The partition function depends only on the area of the surface, that is,

on the number Nf of triangular faces.

If a square lattice was used instead of a triangulation, then all faces would have four

spin variables on its boundary, and the local face weights would be coefficients of Mabcd.

In this case the parameters β and x must satisfy e−2βg = tanh(4x), ρ8 = 2 sinh(8x).

The transformation E applied to this algebra gives the same model as in the case of

triangulations. Repeating the arguments already used, we find that the partition function

of the Z(2) pure gauge theory for a square lattice L is given by

Z(2)
g (L, βg)|h=0 = 22Nf coshNf β (1 + tanhNf β) . (4.9)

Again Z depends only on the area of the surface, but the dependence is slightly different

from that for triangulations. We conclude that the partition function of the theory depends

on the chosen lattice and on its area, a result which agrees with those of [12, 13].

Higgs-gauge theory. The Z(2) Higgs-gauge theory on two-dimensional triangulations

is described by the algebra of eq. (4.4), with the coproduct of eq. (3.17), that is,

φ0 · φ0 = φ1 · φ1 = ρ−1 cosh(x) φ0 + ρ−1 sinh(x) φ1 ,

φ0 · φ1 = φ1 · φ0 = ρ−1 sinh(x) φ0 + ρ−1 cosh(x) φ1 ,

∆(φ0) = eh/2φ0 ⊗ φ0, ∆(φ1) = e−h/2φ1 ⊗ φ1 ,

(4.10)

with e−2βg = tanh(3x) and ρ6 = 2 sinh(6x). The transformation E defined in eq. (4.5) now

leads to the transformed local weights

∆′ 00 = 2ρ−2e2x cosh h ,

∆′ 11 = 2ρ−2e−2x cosh h ,

∆′ 01 = ∆′ 10 = 2ρ−2 sinh h ,

M ′
abc = δac δbc .

(4.11)

These weights have a simple interpretation after some rearranging of the factors appearing

in the above formulae is performed. First note that each link weight ∆′ ab contains a factor

2The lattice is supposed to be connected, not composed of disjoint pieces.
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exp[(−1)ax] exp[(−1)bx]. The indices a and b describe the spins at the faces connected by

the link. We let the factors exp[(−1)ax] and exp[(−1)bx] be absorbed by the corresponding

face weights, i.e. we apply a rescaling with parameters s0 = ex and s1 = e−x. Besides, a

fixed factor 2ρ−2
√

sinh(h) cosh(h) is removed from all link weights. These factors will be

later reinserted in the partition function. Then the local weights reduce to

∆′ 00 = ∆′ 11 =
√

coth h ,

∆′ 01 = ∆′ 10 =
√

tanh h ,

M ′
000 = e3x, M ′

111 = e−3x .

(4.12)

All the remaining M ′
abc are null. Now these weights describe an Ising model on the dual

lattice L?. Recall that for any face in L there corresponds a vertex in L?. The weights M ′
abc

in eq. (4.12) describe a model with spins at faces, so that on the dual lattice L? we have

spins at vertices. Let us write them as σv = ±1. According to eq. (4.12), the dual vertex

weights are W (v) = exp(3xσv). Furthermore, for each link l in L there corresponds a link

l? in the dual lattice L?. The local weight at it is given by ∆′ab, where the indices a, b

describe the spins at the two ends of l?. Now if we write
√

tanh h = e−β?
I , then these link

weights reduce to W (l) = exp(β?
I σa σb). And if we set 3x = m?, then the vertex weights

read W (v) = exp(σv m?). These are exactly the local weights for an Ising model at inverse

temperature β?
I in the presence of an external magnetic field m? (see eq. (2.4)).

Up to the removal of a factor 2ρ−2
√

sinh(h) cosh(h) from each link weight, we have

found that the application of the transformation E to the original Z(2) Higgs-gauge theory

has made it an Ising model. Thus, up to such factors, the partition functions of the models

are numerically equal. Collecting these factors, we find that

Z(2)
g (L, βg, h) =

[

2ρ−2
√

sinhh cosh h
]Nl

Z
(2)
I (L?, β?

I ,m?) , (4.13)

where Nl is the number of links in L. The coupling constants are related by

e−2β?
I = tanh h ,

e−2βg = tanh m? ,
(4.14)

where we have used eq. (3.15) to write x in terms of βg. This is our version of the Kramers-

Wannier bidimensional duality relation in the presence of an external magnetic field. These

relations are valid when a triangulation is considered, instead of a square lattice. The

relations among the coupling constants are the same as obtained by Wegner. We can

rewrite eq. (4.14) in terms of the coupling constants as

2Nf e−βgNf

(cosh h)Nl
Z(2)

g (L, βg, h) =
2N?

l e−β?
I N?

l

(cosh m?)N
?
v

Z
(2)
I (L?, β?

I ,m?) , (4.15)

where Nf , Nl are the number of faces and links in L, and N?
v , N?

l are the number of vertices

and links in L?.

For the case of square lattices, the parameters β and x must satisfy e−2βg = tanh(4x),

ρ8 = 2 sinh(8x). Applying again the transformation E of eq. (4.5), we find the same

transformed link weights ∆′ab obtained for triangulations, given in eq. (4.12), and the face
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weights M ′
abcd = δad δbd δcd. Repeating the arguments used for the case of triangulations,

but now taking m? = 4x, we are again led to eqs. (4.13), (4.14) and (4.15), which means

that the same duality relations hold between the Z(2) Higgs-gauge theory and the Ising

model with a magnetic field for the cases of two-dimensional triangulations and square

lattices.

The results of these section consist of an extension of the Kramers and Wannier mag-

netic duality in two dimensions to arbitrary 2d triangulations. Begining with an Ising model

on a 2d triangulation L, one can construct a dual Z(2) gauge theory on the dual lattice L?.

The partitions functions of these models will be related by eq. (4.15) whenever the coupling

constants satisfy eq. (4.14). This is a general result, and is valid for any finite triangulation

L. However, one must notice that in general the lattice is changed by dualization. It is

well known that a square lattice with periodic boundary conditions has as its dual another

lattice with the same properties — the lattice is self-dual —, but a honeycomb lattice, for

example, is transformed by dualization in a triangular lattice [14]. In particular, boundary

conditions may be changed in the dualization of the lattice. Therefore, in situations where

one is attached to a specific set of boundary conditions (in the study of interfaces in the

Ising spin model with antiperiodic b.c., for instance, or of the deconfining transition in Z(2)

gauge theory with periodic b.c.), a special care must be taken when applying the duality

transformations. This remark applies for dualities in any dimensionality.

4.3 Three-dimensional dualities

Pure gauge theory. Now let the lattice L be a three-dimensional triangulation. First

let us consider the Z(2) pure gauge theory. Then the parameters ρ and x must satisfy

e−2βg = tanh(3x) and ρ6 = 2 sinh(6x), and the coproduct is given by eq. (3.16). The

algebra is exactly the same as in the bidimensional case (eq. (4.4)). In fact, this algebra

describes the pure gauge theory on triangulations of any dimensionality d. Then the

transformation E gives the same local weights of eq. (4.6), but now link weights with an

arbitrarily high number of indices may appear, as the number of faces meeting at a link in

a three-dimensional triangulation is not fixed. Evaluating the weights, we find that

∆′ a1a2···aM = 2ρ−M
{

∏M
i=1 exp[(−1)aix]

}

δ(−1)a1+a2+···+aM ,1 ,

M ′
abc = δac δbc .

(4.16)

It follows that the spin configurations are situated at faces after the transformation, since

the M ′
abc is zero unless all spins on the face boundary are equal. For the link weights

∆′ a1a2···aM , we have the following. If the product of all spins around a link is equal to +1,

then the corresponding weight is 2ρ−M
∏M

i=1 exp[(−1)aiMx]. Otherwise, the weight is zero.

We would like to show that this theory is equivalent to a three-dimensional Ising model.

Consider an Ising model on a three-dimensional lattice L. There are spin variables σv

at the vertices of L, and local weights WI(l) = exp(βσxσy) at the links l of L, where σx and

σy are the spins at the two ends of l. Let {σv} denote a spin configuration on the lattice.

We can define a related configuration {σl}, in which the spin variables are situated at the

links of L. We just let the spin σl at a link l be the product of the spins at the two ends of
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this link, i.e. σl = σxσy. This assignment has two important properties. First, if all vertex

spins σv are flipped, then the same configuration {σl} is obtained, and the Ising weights

WI = exp(βσl) remain unchanged. Up to this symmetry, {σv} is completely determined by

{σl}. Second, for any {σl} obtained by this prescription, we have that (−1)f1+f2+···fM = 1,

where the indices fi describe the link spins at the sides of a face f . So we can rewrite the

Ising model partition function on L as

Z
(3)
I (L, β) = 2

∑

{σl}

∏

l

exp(βσl)
∏

f

δ(−1)f1+f2+···fM ,1 . (4.17)

We want to compare eqs. (4.16) and (4.17). But first we perform some rearranging of

factors in the transformed weights of eq. (4.16). Note that in the link weights ∆′ a1a2···aM

there is a factor exp[(−1)aix] for each face with configuration ai inciding at it. We perform

a rescaling transformation to transfer this factor to the face weight. In addition, we remove

a common factor 2ρ−M from each link weight, which will be later inserted back directly in

the partition function. Then the local weights reduce to

∆′ a1a2···aM = δ(−1)a1+a2+···aM ,1 ,

M ′
000 = e3x , M ′

111 = e−3x ,
(4.18)

all the remaining M ′
abc being null. On the dual lattice, these weights describe a model with

spins at links, link weights W (l) = exp(3xσl), and face weights W (f) = δ(−1)a1+a2+···aM ,1,

where the indices ai describe the spins at the sides of the face f . Comparing with eq. (4.17),

we see that this gives an Ising model at inverse temperature β?
I = 3x. Thus the applica-

tion of the transformation E to the local weights of Z(2) Higgs-gauge theory on a three-

dimensional triangulation L leads to an Ising model in the dual lattice L?. From eq. (3.15),

and recalling that β?
I = 3x, we can write the duality relation

e−2βg = tanh β?
I , (4.19)

which agrees with the result of Wegner for cubic lattices. For the partition functions we

find that

Z(3)
g (L, βg) = 2−12Nlρ−3Nf Z

(3)
I (L?, β?

I ) , (4.20)

or, in terms of the coupling constants,

2Nf e−βgNf Z(3)
g (L, βg) =

2N?
f
−1

(cosh β?
I )N

?
l

Z
(3)
I (L?, β?

I ) . (4.21)

This relation holds for partition functions evaluated on finite three-dimensional triangula-

tions L. It is also valid for cubic lattices L, with the only difference that then one must

take β?
I = 4x.

Higgs-gauge theory. Let us now consider the case of a Higgs-gauge theory in a cubic

lattice L. This model is described algebraically by

φ0 · φ0 = φ1 · φ1 = ρ−1 cosh(x) φ0 + ρ−1 sinh(x) φ1 ,

φ0 · φ1 = φ1 · φ0 = ρ−1 sinh(x) φ0 + ρ−1 cosh(x) φ1 ,

∆(φ0) = eh/4φ0 ⊗ φ0 , ∆(φ1) = e−h/4φ1 ⊗ φ1 ,

(4.22)
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where e−2βg = tanh(4x) and ρ8 = 2 sinh(8x). The transformation E now gives the trans-

formed weights

∆′a1a2a3a4 = 2ρ−4
[

∏4
i=1 e(−1)ai x

] (

cosh h δ(−1)a1+a2+a3+a4 ,1 + sinh h δ(−1)a1+a2+a3+a4 ,−1

)

,

M ′
abcd = δad δbd δcd .

(4.23)

As in previous cases, we collect some factors to make the weights simpler. There is a factor

(−1)ai for each spin inciding at a link. We transfer this factor to the corresponding face

weight. In addition, we remove a common factor 2ρ−4
√

sinhh cosh h from each link weight,

which will be later inserted back in the partition function. Then the weights reduce to

∆′ a1a2a3a4 =
(

tanh−1/2 h δ(−1)a1+a2+a3+a4 ,1 + tanh1/2 h δ(−1)a1+a2+a3+a4 ,−1

)

,

M ′
0000 = e4x , M ′

1111 = e−4x ,
(4.24)

all the remaining face weights being zero. Putting e−2β?
g = tanh h, and h? = 4x, this is the

same as
∆′ abcd = exp

[

β?
g (−1)a+b+c+d

]

,

M ′
0000 = eh?

, M ′
1111 = e−h?

.
(4.25)

Now these weights have a direct interpretation on the dual lattice. In the lattice L, the spins

are situated at faces. Thus in the dual lattice L?, they lie on links. According to eq. (4.25),

there is a link weight Wl = exp(σlh
?) for each link with a spin σl at it. Furthermore, the

dual face weights are the coefficients of ∆′abcd, which describe a four-spin gauge interaction

with coupling constant β?
g . Thus another Z(2) gauge-Higgs theory is obtained on the dual

lattice. We can write for the the coupling constants the duality relations

e−2β?
g = tanh h ,

e−2βg = tanh h? ,
(4.26)

and for the partition functions we find that

Z(3)
g (L, βg, h) =

[

2ρ−4
√

sinh h cosh h
]Nl

Z(3)
g (L?, β?

g , h?) . (4.27)

This formula can be rewritten in terms of the coupling constants as

e−βgNl

(cosh h)Nl
Z(3)

g (L, βg, h) =
e−β?

gN?
f

(cosh h?)N
?
f

Z(3)
g (L?, β?

g , h?) . (4.28)

This formula gives the self-duality of Z(2) Higgs-gauge theory on a cubic lattice, which is a

known result. We have proved that such duality can be recasted as an algebraic symmetry,

that is, interpreted as a change of basis in the algebra H which describes the model.

Higgs-gauge theory with a variable Higgs coupling. As an example of a new duality

among spin models which can be obtained in our formalism, let us consider the case of a Z(2)

gauge-Higgs theory with a variable Higgs coupling on a three-dimensional triangulation L.

Let there be a Higgs coupling hl = Mh at each link l, where M is the number of faces
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meeting at l. The gauge coupling βg is held constant over the lattice. This theory is

described algebraically by the coproduct

∆(φa) = exp[(−1)ah]φa ⊗ φa , (4.29)

and the product for which ρ and x satisfy e−2βg = tanh(3x) and ρ6 = 2 sinh(6x). The link

weights of this theory are just

∆a1a2···aM = δa1aδa2a · · · δaM a exp[(−1)aMh] , (4.30)

as already discussed. The face weights are those of a Z(2) lattice gauge theory with gauge

coupling βg. The action of the transformation E on these weights leads to

∆′ a1a2···aM = 2ρ−M
[

∏M
i=1 e(−1)aix

]

(

cosh Mhδ
(−1)

PM
i=1

ai ,1
+ sinhMhδ

(−1)
PM

i=1
ai ,−1

)

,

M ′
abc = δab δac .

(4.31)

These weights can be simplified by some rearranging of factors, as in previous cases. In

each link weight, there is a factor ρ−1 exp[(−1)ai ] for each face inciding at the link. We

transfer it to the corresponding face weight. A factor ρ−3 shows up at every face, which is

removed from them, and later multiplied directly to the partition function. We also remove

a factor 2
√

cosh(Mh) sinh(Mh) from the link weights. Then the weights reduce to

∆′ a1a2···aM =
√

coth Mh δ
(−1)

PM
i=1

ai ,1
+

√
tanh Mhδ

(−1)
PM

i=1
ai ,−1

,

M ′
000 = e3x , M ′

111 = e−3x .
(4.32)

All the remaining face weights are zero. If we define new coupling constants β?
g and h? by

e−2β?
g (M) = tanh Mh ,

h? = 3x ,
(4.33)

then we can rewrite eq. (4.32) as

∆′a1a2···aM = exp
[

(−1)
PM

i=1
aiβ?

g (M)
]

,

M ′
000 = eh?

, M ′
111 = e−h?

.
(4.34)

On the dual lattice L? these weights have the following interpretation. There are spin

variables σl? at the links of L?, since in the original lattice they lie on faces. There

corresponds to each link a local weight given by exp(h?σl), which describes a Higgs term.

The face weights on L? are the coefficients of ∆′ a1a2···aM . These describe a gauge theory

with a coupling constant β?
g(M), whose strength is variable, and fixed by the duality

relation of eq. (4.33). The Higgs coupling h? does not vary. Furthermore, there is an extra

weight at the dual faces yet, corresponding to the factors wd = 2
√

cosh(Mh) sinh(Mh)

that we have summarily removed from the face weights of L. These weights are of a new

nature, and cannot be interpreted as arising from gauge or Ising interactions.

The strength of the gauge coupling decreases with the number of sides of the face. It

means that in this model the gauge interactions are weaker in larger faces, where the spins
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are far from each other. If the lattice is regular, then all faces are equal, and we recover

a Z(2) Higgs-gauge theory. In addition, the extra weighs wd = 2
√

cosh(Mh) sinh(Mh)

give a naive measure of the faces size. These weights depend only on the number M of

sides in the face, and increases with M . Besides, in the limit of M >> 1, they reduce to

wd = exp(Mh/2), which corresponds to an energy term mh/2 in the action. Recalling that

the number of triangles in a face with M sides is proportional to M , we can understand

this term as proportional to the face area.

5. Continuous symmetries in two dimensions

In this section we consider the action of another class of transformations of GL(2,R) on

the local weights of Z(2) lattice gauge theory, as another example of application of the

transformation formalism. We consider pure and Higgs-gauge theory on two-dimensional

triangulations. We define a two-parameter class of transformations

F =

(

µ cosh y −µ sinh y

−µ sinh y µ cosh y

)

, (5.1)

and study its action on the local weights ∆ab and Mabc of these theories. In terms of the

new basis vectors ξa = F b
aφb, the algebraic structure of H is given by

ξ0 · ξ0 = ξ1 · ξ1 = µρ−1 cosh(x − y) ξ0 + µρ−1 sinh(x − y) ξ1 ,

ξ0 · ξ1 = ξ1 · ξ0 = µρ−1 sinh(x − y) ξ0 + µρ−1 cosh(x − y) ξ1 .
(5.2)

If we set ρ?−1 = µρ−1 and x? = x − y, then this algebra has the form given in eq. (3.2).

Therefore, it describes the face weights of another Z(2) gauge theory, with a transformed

gauge coupling β?
g , given by e−2β?

g = tanh 3x?. As we are working with triangulations, the

parameter µ must be chosen so that ρ? 6 = 2 sinh 6x?. It follows that we must set

µ =

(

sinh 6x

sinh 6x?

)1/6

. (5.3)

Granted that this relation is satisfied, F reduces to a one-parameter class of transfor-

mations on H, for which the gauge coupling βg changes continuously. The action of the

transformation on the link weights depends on the value of h, and we consider the cases

h = 0 and h 6= 0 separately.

Pure gauge theory. The coproduct for Z(2) pure gauge theory is given by eq. (3.16).

We find for the transformed link weights that

∆′ 00 = ∆′ 11 = µ−2 cosh 2y ,

∆′ 01 = ∆′ 10 = µ−2 sinh 2y .
(5.4)

The parameter y must be positive in order that these weights are strictly positive. In this

case, they describe an Ising interaction between the two spins incident at the link. This

interpretation follows again from a simple rearranging of factors. Let us remove from all

weights a common factor µ−2
√

sinh 2y cosh 2y, and define β?
I by

e−2β?
I = tanh 2y . (5.5)
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Figure 3: Modified Z(2) pure gauge theory. There is a spin variable σx = (−1)x at each face side.

The face weights are those of a Z(2) gauge theory. For each link there corresponds the local weight

of an Ising model.

Then the link weights reduce to ∆ab = exp[(−1)a+bβ?
I ], which has the explicit form of an

Ising interaction. In the new basis B′ = {ξ0, ξ1}, we have the following transformed theory,

which we call a modified gauge theory. The spin variables are assigned independently to

the sides of the faces of L. There is a Z(2) gauge theory weight Mabc(f) = exp[(−1)a+b+cβ?
g ]

at each face f . Two spins meet at each link of the triangulation, and there corresponds

to this an Ising weight ∆ab = exp[(−1)a+bβ?
I ] (see figure 3). The partition function of this

modified theory is the sum over configurations

Z
(2)
mod(L, β?

g , β?
I ) =

∑

{σa}

∏

f

Mf1f2f3

∏

l

∆l1l2 , (5.6)

where the indices fi and lj describe the spins at the boundary of the face f and at the two

sides of the link l, respectively.

As the modified theory we have described was obtained from Z(2) pure gauge theory

by the action of the transformation F given in eq. (5.1), then the partition functions are

related by

Z(2)
g (L, βg) =

(

µ−2
√

sinh 2y cosh 2y
)Nl

Z
(2)
mod(L, β?

g , β?
I ) , (5.7)

where Nl is the number of links in the triangulation. For the coupling constants, we find

tanh3 β?
I · tanh2 β?

g = tanh2 βg , (5.8)

It follows from eq. (5.8) that two modified Z(2) gauge theories with coupling constants

β1
I , β1

g and β2
I , β2

g have the same partition function, up to a factor, if

tanh3 β1
I · tanh2 β1

g = tanh3 β2
I · tanh2 β2

g . (5.9)

This formula describes a family of continuous symmetries among such spin-gauge models,

and gives an explicit example of how the transformation formalism works for continuous

transformations.

Higgs-gauge theory. Now let us see which modifications are introduced by the presence

of a nonzero Higgs coupling h. In this case the coproduct is the one given in eq. (3.17),
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Figure 4: Modified Z(2) gauge theory in the presence of a magnetic field h. There is a spin variable

σx = (−1)x at each face side. The face weights are those of a Z(2) gauge theory. For each link there

corresponds the local weight of an Ising model. For each spin configuration σx there is a magnetic

local weight eσxh.

and the transformation E leads to the transformed link weights

∆′ 00 = µ−2(eh cosh2 y + e−h sinh2 y) ,

∆′ 01 = ∆′ 10 = µ−2 (eh + e−h) sinh y cosh y ,

∆′ 11 = µ−2(eh sinh2 y + e−h cosh2 y) .

(5.10)

To understand the model these weights describe, let us rewrite them in a simpler form.

Introducing the new coupling constants β?
I and h? defined by

e4β?
I = e2h+tanh2 y

1+e2h tanh2 y
,

e4h?

= 1 + 1
cosh2 h sinh2 2y

,
(5.11)

and performing some algebraic manipulation, we find that the local weights reduce to

∆00 = qe2h?
eβ?

I ,

∆01 = qe−β?
I ,

∆11 = qe−2h?

eβ?
I ,

(5.12)

where

q4 = (1 + cosh2 h sinh2 2y)(cosh2 h sinh2 2y) . (5.13)

These weights describe another kind of modified Z(2) gauge theory, similar to the one ob-

tained for the case of the pure gauge theory. The spin variables are attached independently

to sides of faces along the lattice. There is a face weight Mabc(f) = exp[(−1)a+b+c β?
g ]

at each face f , which describes a gauge interaction. There is also an weight ∆ab(l) =

exp[(−1)a+b β?
I ] for each link l, where a and b are the spins connected by the link. This

corresponds to an Ising interaction between such spins. Finally, for every spin variable σa

at the boundary of a face, there is a magnetic local weight Wa = exp[(−1)ah?]. A factor q

was removed from each link. A summary of the model is given in figure 4.

The partition function is the product of all local weights in the lattice, summed over

all spin configurations. We denote it by Z
(2)
mod(L, β?

g , β?
I , h?). As it is obtained with the

application of a change of basis in the 2D Higgs-gauge theory, it follows that

Z
(2)
mod(L, β?

g , β?
I , h?) = qNlZ(2)

g (L, βg, h) , (5.14)
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where the parameters β?
I , h?, h, y must satisfy the relations of eq. (5.11), and e−2βg =

tanh 3x, e−2β?
g = tanh 3(x − y). The expression in eq. (5.14) gives a family of continuous

symmetries among the spin-gauge models Z
(2)
mod(L, β?

g , β?
I , h?). In these symmetries, there is

no need to invoke the dual lattice. Instead, we work with a less rigid discrete space, in which

the combinatorial structures of both L and L? show up naturally. For such discretisation,

the models related by the symmetry transformations live on the same lattice. A doubling of

variables occurs, as we do not assign a single spin to each link, but one for each face meeting

at the link. The models obtained are equivalent to the Z(2) Higgs-gauge theory, which in

turn is dual to the bidimensional Ising model in the presence of an external magnetic field.

Whether these modified theories may help in understanding the unsolved 2D transverse

Ising model, we leave here as an open question.

6. Conclusion and final remarks

In this paper we studied a general class of symmetries relating partition functions of a

family of classical spin models which generalises the Ising model and Z(2) lattice gauge

theory. We interpreted these theories algebraically in terms of the structure constants

of a vector space H equipped with algebra and coalgebra structures, using a formalism

reminiscent from topological quantum field theories, and proved that to any change of basis

of H there is an associated symmetry between these models. The well known Kramers and

Wannier dualities of [1] were shown to be special cases of this formalism. We studied

these dualities on two- and three-dimensional triangulations, extending results known for

the case of square and cubic lattices. In addition, a new class of continuous symmetry

transformations involving generalised Z(2) gauge theories in two dimensions was developed.

In two dimensions, we found the following results. It is well known that pure gauge

theories in two dimensions are exactly soluble. As a simple application of our formalism,

we have described a change of basis of H which trivialises the theory and yields a solution

for the partition function which is valid for any triangulation. The duality of the 2D Higgs-

gauge to the Ising model coupled to a magnetic field was studied on general triangulations.

Explicit expressions for the relation between the partition functions on general lattices were

given, in terms of simple combinatorial factors such as the number of links and faces in

the lattice. We also proved the existence of new symmetries relating the Z(2) Higgs-gauge

theory to a generalised model described by three coupling constants, which describe a

plaquette interaction, a magnetic field term, and an additional Ising interaction. The new

symmetry transformations describe continuous transformations of these coupling constants.

In three dimensions, we studied the duality from the Z(2) pure gauge theory to the

3D Ising model on finite triangulations. We derived explicit expressions for the coefficients

which relate the partition functions, in a manner which is valid for general triangulations.

The expression depends on the topology of the lattice only through simple combinatorial

properties, namely, the number of faces and links of the lattice. We also considered a

modified Z(2) Higgs-gauge theory on finite triangulations, for which the Higgs coupling

hl is variable along the lattice, being proportional to the number M of faces meeting at

the link l, hl = Mh. This theory was found to be dual to an Ising model with a variable
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inverse temperature, coupled to a magnetic field, and to an additional field which describes

an area-dependent energy term in the action.

The method we have used to develop these symmetries can be applied to any theory

which admits an algebraic interpretation similar to the one given in [10] for the case of

Z(2) pure gauge theory on triangulations. Whether this is the case of more realistic gauge

theories is an interesting question. In particular, it is natural to conjecture that dualities

in Z(N) gauge theories can be formulated in a similar fashion. The extension to continuous

gauge groups also deserves investigation. The mathematical prescriptions we have used do

not pose any obstruction for the application to the case of non-commutative gauge groups.

Duality relations are difficult to be formulated in this case, and our prescriptions might be

of help in the study of this subject.
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